STEREOISOMERS OF COLEONOL (FORSKOLIN) AND RELATED DITERPENOIDS

R.A. Vishwakarma ${ }^{a}$ and J.S. Tandon ${ }^{b}$
${ }_{\mathrm{b}}$ Central Institute of Medicinal \& Aromatic Plants, Lucknow 226016
${ }^{\text {b }}$ Central Drug Research Institute, Lucknow 226001, India

Abstract

Regioselective Mitsunobu inversion of the hydroxyl groups of coleonol (forskolin) led to new, unnatural epimers as potential adenylate cyclase stimulant and pharmacodynamic agents.

Coleonol (Forskolin, $1 \alpha, 6 \beta, 9 \alpha$-trihydroxy-7B-acetoxy-8, 13-epoxy-labd-14-en-11-one, 1), a labdane diterpenoid isolated ${ }^{1}$ from the Indian medicinal plant Coleus forskohlii and a potential drug for glaucoma, congestive heart-failure and bronchial asthma, activates adenylate cyclase in unique manner by direct and reversible action on catalytic subunit of the enzyme in absence of guanine nucleotide stimulating protein ${ }^{2}$. Forskolin, owing to its highly oxygenated structure and novel pharmacodynamic action, has emerged as a highly attractive target for synthetic investigations ${ }^{2}$.

During our studies on the physiological effects of Coleonol (Forskolin) and its analogues, we decided to prepare new and unnatural stereoisomers (epimers) of 1 to correlate biological activity with the stereochemical orientation of various hydroxyl groups. Herein we report the synthesis of various 1-epi- and 7-epi coleonols (forskolins) and 6,7-epoxy-6,7-dideoxycoleonol using versatile Mitsunobu reaction ${ }^{3}$ which has become a useful tool in organic synthesis with stereochemical outcome being almost invariably a clean inversion of configuration of secondary hydroxyl centres. The reaction of 1 (1 mmol) with triphenylphosphine (TPP, 3 mmol), diethylazodiacarboxylate (DEAD, 3 mmol) and benzoic acid (1.1 mmol) in dry THF at room temperature for 36 h gave compound 2 after chromatography and characterized as 1B-benzoyloxy-1-deoxycoleonol (yield 45\%). The PMR spectra of 2 showed 4 dd at $\delta 5.75\left(\mathrm{~J}_{\mathrm{ax} / \mathrm{ax}}=10 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{ax} / \mathrm{eq}}=2 \mathrm{~Hz}\right)$ assigned to $1-\alpha$-axial proton coupled with two neighbouring C -2ax and C -2eq protons. Debenzoylation of 2 with methanolic NaOMe at r.t. yielded 1-epi-7-deacetylcoleonol (3) which on selective acetylation ($\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Py}, \mathrm{O}-5^{\circ}$) gave 1 -epi coleonol (4). The stereochemistry of $\mathrm{C}_{1}-\mathrm{OH}$ of 4 was assigned as β-equatorial by PMR^{5} which showed dd at $3.95\left(\mathrm{~J}_{\mathrm{ax} / \mathrm{ax}}=9.5 \& \mathrm{~J}_{\mathrm{ax} / \mathrm{eq}}=2.0 \mathrm{~Hz}\right)$. A recently modified Mitsunobu procedure ${ }^{6}$ to obtain equatorial vs axial-hydroxyl selectivity using trifluoroacetic acid (TFA) as nucleophile and sodium benzoate as catalyst was used to synthesize 7α-axial epimer of 1 . The 7 -deacetylcoleonol (5) prepared by deacetylation of 1 , on Mitsunobu reaction using TFA (1.1 mole equivalent) and NaOBz afforded 7-deacetyl-7-epi-trifluoroacetylcoleonol (6) in 60% yield. The PMR of 6 showed 7 d at $5.50(J=2 \mathrm{~Hz})$ for $7-\beta$-equatorial CH proton. The hydrolysis of 6 by refluxing in MeOH led to 7-deacetyl-7-epi-coleonol (7). The reaction of coleonol-B (6-acetyl-7-deacetylcoleonol, 8) with TPP-DEAD complex using TFA and NaOBz gave 6-acetyl-7-deacetyl-7-epitrifluoroacetylcoleonol (9) which on selective hydrolysis (reflux in MeOH) gave

7-epi coleonol-B (10). Further hydrolysis (NaOMe in MeOH at r.t.) 9 gave 7. An interesting product, 6,7-epoxy-6,7-dideoxycoleonol (11) was formed when 7-deacetylcoleonol (5) was reacted with TPP-DEAD complex in dry THF in absence of acidic component. The result indicated

the inversion at $\mathrm{C}-7$ being successful but followed by an intramolecular nucleophilic displacement by free hydroxyl at C-6. The stereochemistry of epoxide ring was ascertained to be $6 \beta-7 \beta$-oriented as determined by PMR spectrum of 11 .

Conclusively, it is possible to regioselectively invert the configuration of 1 - and $7-\mathrm{OH}$ of forskolin using Mitsunobu reaction to prepare new and unnatural epimeric compounds as potential pharmacodynamic agents. The 6- and 9-hydroxyl groups being much more hindered did not react. The biological activity of the epimeric forskolins will be published separately.

References and Notes

1. (a) J.S. Tandon, M.M. Dhar, S. Ramakumar and K. Venkatesan, Indian J. Chem., 15B, 880 (1977); (b) S.V. Bhat, B.S. Bajwa, H. Dornauer, N.J. deSouza and H.W. Fehlhaber, Tetrahedron Lett., 1669 (1977).
2. For a review, See: K.B. Seamon and J.W. Daly, Adv. Cyclic Nucleotide Res., 20, 1 (1986). For total syntheses of Forskolin, See: (a) F.E. Ziegler, B.H. Jaynes, M.T. Saindane, J. Am. Chem. Soc., 109, 8115 (1987); (b) S.-i. Hashimoto, S. Sakata, M. Sonegawa, S. Ikegami, J. Am. Chem. Soc., 110, 3670 (1988); (c) E.J. Corey, P.D.S. Jardine, J.C. Rohloff, J. Am. Chem. SoC., 110, 3672 (1988). For regiocontrolled reactions, see (a) R.W. Kosley and R.J. Cherill, J. Org. Chem., 54, 2972 (1989); (b) G.I. O'Malley, B. Spahl, R.J. Cherill and R.W. Kosley, J. Org. Chem., 55, 1102 (1990).
3. O. Mitsunobu, Synthesis, 1 (1981).
4. PMR data of $2.7 .50(\mathrm{~m}, 5 \mathrm{H}, \mathrm{COPh}), 6.00$ (dd, $1 \mathrm{H}, \mathrm{H}-14, \mathrm{~J}=10 \& 17$), 5.75 (dd, $1 \mathrm{H}, \mathrm{H}-\mathrm{lax}$, $\mathrm{J}=10 \& 2), 5.50(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-7, \mathrm{~J}=4), 5.24(\mathrm{dd}, \mathrm{H}, \mathrm{H}-15, \mathrm{~J}=17 \& 1.5), 4.48(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-6), 4.93$ (dd, $1 \mathrm{H}, \overrightarrow{\mathrm{H}}-15 \mathrm{C}, \mathrm{J}=10 \& 1.5$), $3.18(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-12, \mathrm{~J}=17$), $2.50(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-12$, $\mathrm{J}=17), 2.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.00,1.10,1.27,1.30,1.60\left(\right.$ all $\left.\mathrm{s}, 5 \times \mathrm{CH}_{3}\right)$.
5. PMR data of 4. 6.13 ($\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-14, \mathrm{~J}=10 \& 17)$), $5.21(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-15, \mathrm{~J}=17 \& 1.5)$, 4.99 (dd, $1 \mathrm{H}, \mathrm{H}-15, \mathrm{~J}=10 \& 1.5), 3.95(\mathrm{dd}, \mathrm{lH}, \mathrm{H}-\mathrm{lax}, \mathrm{J}=9.5 \& 2), 4.40(\mathrm{~m}, \mathrm{IH}, \mathrm{H}-6)$, $5.50(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-7, \mathrm{~J}=4), 3.18(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-12, \mathrm{~J}=17), 2.50(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-12, \mathrm{~J}=17), 2.10(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{H}-5, \overline{\mathrm{~J}}=3$), $2.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.0,1.05,1.25,1.40,1.60\left(\mathrm{all} \mathrm{s}, 5 \times \mathrm{CH}_{3}\right)$.
6. M. Varasi, K.A.M. Walker and M.L. Maddox, J. Org. Chem., 52, 4235 (1987).
7. PMR data of 6. 6.00 (dd, $1 \mathrm{H}, \mathrm{H}-14, \mathrm{~J}=10 \& 17$, 5.21 (dd, $1 \mathrm{H}, \mathrm{H}-15, \mathrm{~J}=17$ \& 1.5), $4.99(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-15, \mathrm{~J}=10 \& 1.5), 5.50(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-7, \mathrm{~J}=2), 4.55(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1), 4.48(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-6), 3.15(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-12, \mathrm{~J}=17), 2.50(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-12, \mathrm{~J}=17$), $2.30(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-5), 0.95,1.05$, $1.25,1.30$, 1. 55 (all $\mathrm{s}, 5 \times \mathrm{CH}_{3}$).
8. PMR data of 11.6 .00 (dd, $\mathrm{HH}, \mathrm{H}-14, \mathrm{~J}=10 \& 17$), 5.15 (dd, $1 \mathrm{H}, \mathrm{H}-15, \mathrm{~J}=17 \& 1.5$), $5.00(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-15, \mathrm{~J}=10), 4.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1), 3.30(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-12, \mathrm{~J}=15), 2.40(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{H}-12 \mathbf{2}^{\prime} \mathrm{J}=15\right), 2.55(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-7, \mathrm{~J}=3.5), 2.15(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-6, \mathrm{~J}=3.5 \& 1.9), 2.05(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{H}-5, \mathrm{~J}=1.9$), $1.20,1.21,1.40,1.50,1.60$ (all s , $5 \times \mathrm{CH}_{3}$).
